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In this paper we develop a local discontinuous Galerkin (LDG) method for the generalized
Zakharov system. Two energy conservations of the LDG scheme are proved for the general-
ized Zakharov system. Numerical experiments for the Zakharov system are presented to
illustrate the accuracy and capability of the methods, including accuracy tests, plane
waves, soliton–soliton collisions of the standard and generalized Zakharov system and a
two-dimensional problem.
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1. Introduction

The goal of this paper is to develop a local discontinuous Galerkin (LDG) method for the generalized Zakharov
system:
iEt þ DE� Nf ðjEj2ÞEþ gðjEj2ÞE ¼ 0;

�2Ntt � DðN þ FðjEj2ÞÞ ¼ 0;
which is originally introduced to describe the Langmuir turbulence in a plasma. Here, the complex function E represents the
slowly varying envelope of a high-frequency plasma field, the real function N represents the deviation of ion density from its
equilibrium value (an acoustic wave), � is a parameter inversely proportional to the acoustic speed, and f,g,F are all given real
functions. The Zakharov system is a general model governing the interaction between dispersive and non-dispersive (acous-
tic) waves. It has found a number of applications in various physical problems, such as in the theory of molecular chains,
hydrodynamics and so on.

The generalized Zakharov system covers many generalizations of the Zakharov system in various physical applications.
When � ¼ 1; f ðjEj2Þ ¼ 1; gðjEj2Þ ¼ 0 and FðjEj2Þ ¼ jEj2, the system reduces to the original form of the standard Zakharov
system
. All rights reserved.
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iEt þ DE� NE ¼ 0;

Ntt � DðN þ jEj2Þ ¼ 0;
which was first proposed by Zakharov [34] in 1972. In the singular limit � ! 0 (infinite acoustic speed, the subsonic limit),
the system reduces to the nonlinear Schrödinger equation (NLS):
iEt þ DEþ FðjEj2Þf ðjEj2ÞEþ gðjEj2ÞE ¼ 0:
Many numerical methods have been developed for the Zakharov system in the last two decades. In 1983, Payne et al. [21]
proposed a Fourier spectral method for the one-dimensional standard Zakharov system. Only two-thirds of the Fourier com-
ponents have been used in their scheme to suppress the aliasing errors. In 1992, Glassey [12,13] developed an energy-pre-
serving implicit finite difference scheme for the Zakharov system in one dimension, and proved its convergence. Chang et al.
[5,4] presented implicit and semi-implicit conservative difference schemes for the one-dimensional generalized Zakharov
system. They also proved the second order convergence of their method. Recently, time-splitting spectral methods have been
proposed by Bao et al. [3,2] and Jin et al. [17,18] to solve the generalized Zakharov system and vector Zakharov system for
multi-component plasmas.

The local discontinuous Galerkin (LDG) method is an extension of the discontinuous Galerkin (DG) method aimed at solv-
ing partial differential equations (PDEs) containing higher than first order spatial derivatives. The DG method is a class of
finite element methods, using discontinuous, piecewise polynomials as the solution and the test space. It was first designed
as a method for solving hyperbolic conservation laws containing only first order spatial derivatives, e.g. Reed and Hill [22] for
solving linear equations, and Cockburn et al. [8,7,6,9] for solving nonlinear equations. It is difficult to apply the DG method
directly to the equations with higher order derivatives. The idea of the LDG method is to rewrite the equations with higher
order derivatives into a first order system, then apply the DG method on the system. The design of the numerical fluxes is the
key ingredient to ensure stability.

The first LDG method was constructed by Cockburn and Shu in [10] for solving nonlinear convection diffusion equations
containing second order spatial derivatives. Their work was motivated by the successful numerical experiments of Bassi and
Rebay [1] for the compressible Navier–Stokes equations. Yan and Shu developed a LDG method for a general KdV type equa-
tion (containing third order spatial derivatives) in [32], and they generalized the LDG method to PDEs with fourth and fifth
order spatial derivatives in [33]. Levy et al. [19] developed LDG methods for nonlinear dispersive equations that have com-
pactly supported traveling wave solutions, the so-called ‘‘compactons”. More recently, Xu and Shu [27–31] further developed
the LDG method to solve many nonlinear wave equations including the general KdV–Burgers type equations, the general
fifth order KdV type equations, the fully nonlinear K(n, n, n) equations, the generalized nonlinear Schrödinger equations,
the coupled nonlinear Schrödinger equations, the Kuramoto–Sivashinsky equations, the Ito-type coupled KdV equations,
the Kadomtsev–Petviashvili equation, the Zakharov–Kuznetsov equation and the Camassa–Holm equation. Xia et al.
[25,26] developed the LDG method to solve the Allen–Cahn and Cahn–Hilliard type equations. Recently, a LDG method
for solving the porous medium equation is designed in [35]. A common feature of these LDG methods is that stability can
be proved for quite general nonlinear cases. DG and LDG methods also have several attractive properties, such as their flex-
ibility for arbitrary hp adaptivity and their excellent parallel efficiency.

This paper is organized as follows. In Section 2, we present and analyze the LDG method for the generalized Zakharov
system. In Section 2.1, we review the Zakharov system and its conservation laws. In Section 2.2 we develop the LDG scheme
for the Zakharov system and prove the conservation properties of the LDG scheme. In Section 3, we perform numerical
experiments to show the accuracy and capability of the scheme, including accuracy tests, plane waves, soliton–soliton col-
lisions of the standard and generalized Zakharov systems and two-dimensional problems. Concluding remarks are given in
Section 4.

2. The LDG method for the generalized Zakharov system

In this section we will develop the LDG for the generalized Zakharov system.

2.1. Conservation laws of the generalized Zakharov system

We restrict ourselves to the bounded domain X 2 Rd with periodic or Dirichlet boundary conditions. Consider the follow-
ing initial boundary value problem of the generalized Zakharov system:
iEt þ DE� Nf ðjEj2ÞEþ gðjEj2ÞE ¼ 0; x 2 X; t > 0; ð2:1aÞ
�2Ntt � DðN þ FðjEj2ÞÞ ¼ 0; x 2 X; t > 0; ð2:1bÞ
with initial conditions and the compatibility condition
Eðx;0Þ ¼ E0ðxÞ; Nðx; 0Þ ¼ N0ðx;0Þ; Ntðx;0Þ ¼ N1ðxÞ;
Z

X
N1ðxÞdx ¼ 0; x 2 X; ð2:2Þ
and periodic boundary conditions for all variables or the Dirichlet boundary conditions
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Eðx; tÞ ¼ 0; Nðx; tÞ ¼ 0; x 2 @X: ð2:3Þ
The wave energy D ¼
R

X jEj
2 of the generalized Zakharov system is conserved [34]:
d
dt

D ¼ d
dt

Z
X
jEj2dx ¼ 0: ð2:4Þ
Introducing a new unknown function V ¼ ðV1; . . . ;VdÞ,
�Nt þr � V ¼ 0; ð2:5Þ
it is easy to verify that the Hamiltonian H of the generalized Zakharov system is also conserved [11],
d
dt

H ¼ d
dt

Z
X
jrEj2 þ 1

2
V � V þ N2
� �

þ NFðjEj2Þ þ GðjEj2Þ
� �

dx ¼ 0; ð2:6Þ
if FðsÞ ¼
R sf ðsÞds;GðsÞ ¼

R sgðsÞds.

Remark 2.1. When f ðjEj2Þ ¼ 1; FðjEj2Þ ¼ jEj2 and gðjEj2Þ ¼ 0, the generalized Zakharov system becomes the standard
Zakharov system
iEt þ DE� NE ¼ 0; ð2:7aÞ
�2Ntt � DðN þ jEj2Þ ¼ 0: ð2:7bÞ
The extra conserved quantity of the standard Zakharov system (2.7) is the momentum [11]
P ¼
Z

X

i
2
ðErE� � E�rEÞ þ �NV

� �
dx: ð2:8Þ
Remark 2.2. When f ðjEj2Þ ¼ �2; FðjEj2Þ ¼ �mjEj2 and gðjEj2Þ ¼ 2kjEj2, the generalized Zakharov system becomes
iEt þ DEþ 2NEþ 2kjEj2E ¼ 0; ð2:9aÞ
�2Ntt � DðN � mjEj2Þ ¼ 0; ð2:9bÞ
which is introduced in [14] and simulated in [3,17,18]. For this type of generalized Zakharov system, the Hamiltonian H is no
longer a conserved quantity when m – � 2.

Remark 2.3. One can also add a damping term in the Schrödinger equation and a dissipative term in the wave equation
[3,14,15]
iEt þ DE� Nf ðjEj2ÞEþ gðjEj2ÞEþ icE ¼ 0; c > 0; ð2:10aÞ
�2Ntt � DðN þ FðjEj2ÞÞ ¼ lðDNÞt; l > 0; ð2:10bÞ
in which DðtÞ ¼ e�2ctDð0Þ.
2.2. The LDG method for the generalized Zakharov system

In this section, we develop the LDG method for the generalized Zakharov system (2.1).
Let T h denote a tessellation of X with shape-regular elements K. Let C denote the union of the boundary faces of elements

K 2 T h, i.e. C ¼ [K2T h
@K , and C0 ¼ C n @X. In order to describe the flux functions we need to introduce some notations. Let e

be a face shared by the ‘‘left” and ‘‘right” elements KL and KR. For our purpose ‘‘left” and ‘‘right” can be uniquely defined for
each face according to any fixed rule, see, e.g. [32] for more details of such a definition. Define the normal vectors mL and mR on
e pointing exterior to KL and KR, respectively. If w is a function on KL and KR, but possibly discontinuous across e, let wL denote
ðwjKL

Þje and wR denote ðwjKR
Þje, the left and right trace, respectively.

Let rPkðKÞ and cPkðKÞ be the space of real and complex polynomials of degree at most k P 0 on K 2 T h, respectively. The
finite element spaces are denoted by
rSh ¼ fu : ujK 2 rPkðKÞ;8K 2 T hg;

rR
d
h ¼ U ¼ ð/1; . . . ;/dÞ

T : /ljK 2 rPkðKÞ; l ¼ 1; . . . ;d;8K 2 T h

n o
;

cSh ¼ u : ujK 2 cPkðKÞ;8K 2 T h

� �
;

cR
d
h ¼ U ¼ ð/1; . . . ;/dÞ

T : /ljK 2 cPkðKÞ; l ¼ 1; . . . d;8K 2 T h

n o
:
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Note that functions in rSh; rR
d
h; cSh and cR

d
h are allowed to be completely discontinuous across element interfaces.

To construct the LDG method, firstly we rewrite the generalized Zakharov system (2.1) as a system containing only first
order derivatives:
M ¼ rE; ð2:11aÞ
iEt þr �M � Nf ðjEj2ÞEþ gðjEj2ÞE ¼ 0; ð2:11bÞ
�Nt þr � V ¼ 0; ð2:11cÞ
�V t þrðN þ SÞ ¼ 0; ð2:11dÞ
S ¼ FðjEj2Þ: ð2:11eÞ
To simplify the notation, we still use M,E,N,V and S to denote the numerical solution. The LDG scheme to solve the gen-
eralized Zakharov system (2.11e) is as follows: find E 2 cSh;N; S 2 rSh and M 2 cR

d
h; V 2 rR

d
h such that, for all test functions

u 2 cSh;v ; r 2 rSh and Q 2 cR
d
h; W 2 rR

d
h
Z

K
M � Q ¼

Z
@K

bEQ � mds�
Z

K
Er � QdK; ð2:12aÞZ

K
iEtudK þ

Z
@K

cM � muds�
Z

K
M � rudK þ

Z
K
ð�Nf ðjEj2ÞEþ gðjEj2ÞEÞudK ¼ 0; ð2:12bÞZ

K
�NtvdK þ

Z
@K

bV � mvds�
Z

K
V � rvdK ¼ 0; ð2:12cÞZ

K
�V t �WdK þ

Z
@K

dðNþ SÞW � mds�
Z

K
ðN þ SÞr �WdK ¼ 0; ð2:12dÞZ

K
SrdK ¼

Z
K

FðjEj2ÞrdK: ð2:12eÞ
The ‘‘hat” terms in (2.12a)–(2.12e) in the cell boundary terms from integration by parts are the so-called ‘‘numerical
fluxes”, which are functions defined on the edges and should be designed based on different guiding principles for different
PDEs to ensure stability and local solvability of the intermediate variables M,S.

In the following procedure of proving the two conservation laws (2.4) and (2.6), it turns out that we can take the simple
choices such as
cM je ¼ML; bEje ¼ ER; bV je ¼ V L; dNþ Sje ¼ ðN þ SÞR: ð2:13Þ
We remark that the choice for the fluxes (2.13) is not unique. Considering the compactness of the stencil and optimal accu-
racy, the crucial part is taking cM and bE from opposite sides and bV and dNþ S from opposite sides.

Proposition 2.1 (Conservation laws). The solution to the LDG scheme (2.12) and (2.13) satisfies the conservation of the wave
energy
d
dt

Z
X
jEj2dx ¼ 0;
and if FðsÞ ¼
R sf ðsÞds, the scheme also satisfies
d
dt

Z
X
jMj2 þ 1

2
ðV � V þ N2Þ þ NFðjEj2Þ þ GðjEj2Þ

� �
dx ¼ 0;
where GðsÞ ¼ �
R sgðsÞds.

Proof. Let E� represent the conjugate of E. Choosing the test function u ¼ E� in (2.12b), we obtain
Z
K

iEtE
�dK þ

Z
@K

cM � mE�ds�
Z

K
M � rE�dK þ

Z
K
�Nf ðjEj2ÞEþ gðjEj2ÞE
� �

E�dK ¼ 0; ð2:14Þ
and taking the conjugate of the Eq. (2.14), we get
Z
K
�iE�t EdK þ

Z
@K

cM� � mEds�
Z

K
M� � rEdK þ

Z
K
�Nf ðjEj2ÞE� þ gðjEj2ÞE�
� �

EdK ¼ 0: ð2:15Þ
Similarly, setting the test function Q ¼M� in (2.12a) and then taking the conjugate, we have
Z
K

M �M� ¼
Z
@K

bEM� � mds�
Z

K
Er �M�dK; ð2:16ÞZ

K
M� �M ¼

Z
@K

bE�M � mds�
Z

K
E�r �MdK: ð2:17Þ
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If we add (2.14) and (2.16), and subtract from it the sum of (2.15) and (2.17), we get
Table 3
Accurac

ReðE

ImðE

N

Z
K

iðEE�ÞtdK þ
Z
@K

cM � mE�dsþ
Z
@K

bE�M � mds�
Z

K
r � ðE�MÞdK �

Z
@K

cM� � mEdsþ
Z
@K

bEM� � mds�
Z

K
r � ðEM�ÞdK

� �
¼ 0:

ð2:18Þ
Summing up the Eq. (2.18) over K, and noticing that the fluxes cM and bE are from opposite sides of @K as well as the boundary
conditions, we obtain
d
dt

Z
X
jEj2dx ¼ 0:
For the second conservation law, we take the time derivative of Eq. (2.12a) and choose the test function Q ¼M� to
obtain
Z
K

Mt �M� ¼
Z
@K

bEt M� � mds�
Z

K
Etr �M�dK; ð2:19Þ
and its conjugate
Z
K

M�
t �M ¼

Z
@K

cE�t M � mds�
Z

K
E�tr �MdK: ð2:20Þ
In (2.12b), we choose the test function u ¼ E�t to obtain
Z
K

iEtE
�
t dK þ

Z
@K

cM � mE�t ds�
Z

K
M � rE�t dK þ

Z
K
�Nf ðjEj2ÞEþ gðjEj2ÞE
� �

E�t dK ¼ 0; ð2:21Þ
and its conjugate
Z
K
�iE�t EtdK þ

Z
@K

dM� � mEtds�
Z

K
M� � rEtdK þ

Z
K
�Nf ðjEj2ÞE� þ gðjEj2ÞE�
� �

EtdK ¼ 0: ð2:22Þ
In (2.12c), (2.12d) and (2.12e), we set the test function v ¼ N þ S;W ¼ V and r ¼ Nt , respectively to obtain
Z
K
�NtðN þ SÞdK þ

Z
@K

bV � mðN þ SÞds�
Z

K
V � rðN þ SÞdK ¼ 0; ð2:23ÞZ

K
�V t � VdK þ

Z
@K

dðNþ SÞV � mds�
Z

K
ðN þ SÞr � VdK ¼ 0; ð2:24ÞZ

K
SNtdK ¼

Z
K

FðjEj2ÞNtdK: ð2:25Þ
.1
y test in Example 3.1 for � ¼ 1 at time t ¼ 2, with piecewise P3 and P4 polynomial bases.

h P3 P4

L1 error Order L2 error Order L1 error Order L2 error Order

Þ 2 1.61E�02 – 1.77E�02 – 3.22E�03 – 3.25E�03 –
1 7.27E�04 4.47 8.44E�04 4.39 9.99E�05 5.02 1.58E�04 4.36
1/2 1.01E�04 2.85 7.21E�05 3.55 4.45E�06 4.49 4.66E�06 5.08
1/4 6.78E�06 3.90 4.36E�06 4.05 1.23E�07 5.17 1.22E�07 5.26
1/8 4.32E�06 3.97 2.72E�07 4.00 4.48E�09 4.78 3.57E�09 5.09

Þ 2 2.13E�02 – 2.53E�03 – 3.16E�03 – 2.90E�03 –
1 9.82E�04 4.43 8.28E�04 4.93 1.39E�04 4.50 2.08E�04 3.80
1/2 1.34E�04 2.87 9.35E�05 3.15 5.74E�06 4.60 5.86E�06 5.15
1/4 9.94E�06 3.75 6.02E�06 3.96 1.94E�07 4.89 1.76E�07 5.06
1/8 6.56E�07 3.92 3.77E�07 4.00 6.08E�09 4.99 5.01E�09 5.13

2 8.58E�02 – 9.32E�02 – 5.46E�03 – 7.26E�03 –
1 1.88E�03 5.51 1.95E�03 5.58 9.40E�04 2.54 5.24E�04 3.79
1/2 4.72E�04 1.99 3.45E�04 2.50 1.39E�05 6.08 1.13E�05 5.54
1/4 3.39E�05 3.80 2.15E�05 4.00 7.07E�07 4.30 4.81E�07 4.55
1/8 2.48E�06 3.77 1.40E�06 3.94 1.76E�08 5.32 1.05E�08 5.52
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Let (2.19) + (2.20) � (2.21) � (2.22)+[(2.23) + (2.24)]/� � (2.25), we have
Table 3
Accurac

ReðE

ImðE

N

Fig. 3.1
d
dt

Z
K

MM� þ 1
2
ðV � V þ N2Þ þ NFðjEj2Þ þ GðjEj2Þ

� �
dK

¼
Z
@K

bEt M� � mdsþ
Z
@K

dM� � mEtds�
Z

K
r � ðM�EtÞdK þ

Z
@K

cE�t M � mdsþ
Z
@K

cM � mE�t ds

�
Z

K
r � ðME�t ÞdK � 1

�

Z
@K

bV � mðN þ SÞdsþ
Z
@K

dðNþ SÞV � mds�
Z

K
r � ððN þ SÞVÞdK

� �
: ð2:26Þ
Finally, summing up Eq. (2.26) over K and noticing the fluxes dðNþ SÞ and bV are from the opposite sides of @K as well as the
boundary conditions, we obtain
d
dt

Z
X
jMj2 þ 1

2
ðV � V þ N2Þ þ NFðjEj2Þ þ GðjEj2Þ

� �
dx ¼ 0: �
Remark 2.4. The numerical fluxes for the scheme (2.12) can also be chosen as the central numerical fluxes
cM je ¼ ðML þMRÞ
2

; bEje ¼ ðEL þ ERÞ
2

; bV je ¼ ðV L þ VRÞ
2

; dNþ Sje ¼
ððN þ SÞL þ ðN þ SÞRÞ

2
;

.2
y test in Example 3.1 for � ¼ 10�4 at time t ¼ 2, with piecewise P3 and P4 polynomial bases.

h P3 P4

L1 error Order L2 error Order L1 error Order L2 error Order

Þ 2 2.42E�02 – 3.10E�02 – 5.63E�03 – 5.91E�03 –
1 8.80E�04 4.78 1.22E�03 4.66 1.53E�05 5.20 2.21E�04 4.74
1/2 1.18E�04 2.90 9.68E�05 3.66 5.27E�06 4.86 6.35E�06 5.12
1/4 5.34E�06 4.47 5.06E�06 4.26 1.11E�07 5.57 1.63E�07 5.28
1/8 4.56E�07 3.55 3.75E�07 3.75 3.65E�09 4.93 4.81E�09 5.08

Þ 2 2.83E�02 – 3.64E�02 – 3.46E�02 – 4.92E�03 –
1 1.13E�03 4.65 1.13E�03 5.00 1.94E�04 4.16 2.76E�04 4.16
1/2 1.54E�04 2.87 1.18E�04 3.26 6.50E�06 4.90 7.48E�06 5.21
1/4 1.30E�05 3.57 8.33E�06 3.83 2.42E�07 4.75 2.59E�07 4.85
1/8 5.64E�07 4.53 4.07E�07 4.36 5.77E�09 5.39 6.44E�09 5.33

2 1.08E�01 – 1.09E�01 – 8.04E�03 – 6.92E�03 –
1 2.01E�03 5.75 1.93E�03 5.82 5.59E�04 3.84 6.23E�04 3.47
1/2 4.67E�04 2.11 3.58E�04 2.43 1.87E�05 4.90 1.69E�05 5.21
1/4 4.61E�05 3.34 2.36E�05 3.92 6.25E�07 4.90 5.23E�07 5.01
1/8 2.90E�06 3.99 1.49E�06 3.99 2.14E�08 4.87 1.65E�08 4.99

. Numerical results in Example 3.1, with piecewise P3 polynomial basis and mesh size h ¼ 1: the energiesD, P and H: (a) � ¼ 1, and (b) � ¼ 10�4.
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which would yield a scheme which also satisfies Proposition 2.1. However, this choice gives a scheme which is less compact
in the stencil and sub-optimal in the order of accuracy for odd k (i.e. the accuracy is order k rather than the expected order
k + 1 for odd k), see [10] for a discussion in the context of a dissipative equation. In our numerical test, we use the fluxes
(2.13) and the optimal accuracy order can be obtained.

Remark 2.5. The LDG scheme can be applied to the generalized Zakharov system (2.10), by rewriting the system into
Fig. 3.2
and (d)

Table 3
Parame

Para

A
B
C

M ¼ rE;

iEt þr �M � Nf ðjEj2ÞEþ gðjEj2ÞEþ icE ¼ 0;
�Nt þr � V ¼ 0;

W þ l
�
r � V ¼ 0;

�V t þrðN þ SþWÞ ¼ 0;

S ¼ FðjEj2Þ:
. Numerical results in Example 3.2: (a–c) Numerical solutions of ReðEhÞ; ImðEhÞ and Nh comparing with exact solutions ReðEÞ; ImðEÞ and N at t ¼ 10;
the energies D, P and H evolving with time.

.3
ters used in Example 3.3 of periodic soliton–soliton collisions.

meter set L Emax Emin v u N0

160 1.0 1.0535E�31 0.628319 2.24323 0.0227232
160 0.5 1.0535E�18 0.628319 �0.27094 0.0227232
160 1.0 1.0535E�38 0.314159 �3.22992 0.0227232
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The numerical fluxes are similar to (2.13) with dNþ S replaced by dðNþ SþWÞ. It is easy to verify DðtÞ ¼ e�2ctDð0Þ for the LDG
scheme following a similar proof as that for Proposition 2.1.
3. Numerical tests

In this section, we present numerical tests of the Zakharov system with a solitary wave solution in one dimension to test
the accuracy and � resolution of the LDG scheme developed in Section 2. We also present numerical examples including
plane-wave, soliton–soliton collisions in one dimension, as well as a two-dimensional problem of the Zakharov system to
demonstrate the capability of the method. Time discretization method is the TVD Runge–Kutta method [23]. The stability
constraint between the time step Dt and the mesh size h is Dt ¼ Oðminð�h;h2ÞÞ. This is not the most efficient time discret-
Fig. 3.3. Numerical results at different times in Example 3.3 for case I: electric field jEj.
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ization method to the LDG scheme of the Zakharov system. Semi-implicit time discretization methods can be used to in-
crease the efficiency [24]. However, we will not address the efficiency of time discretization in this paper. We choose the
time step suitably small such that the spatial errors are dominant in the numerical results. With successive mesh refine-
ments, we have verified that all numerical results are mesh convergent.

3.1. The one-dimensional Zakharov system
Example 3.1 (Accuracy test). Consider the one-dimensional standard Zakharov system
iEt þ Exx � NE ¼ 0; ð3:27aÞ
�2Ntt � ðN þ jEj2Þxx ¼ 0; ð3:27bÞ
Fig. 3.4. Numerical results at different times in Example 3.3 for case I: ion density N.
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with a solitary wave solution given in [14,20,3]
Eðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B2ð1� �2C2Þ

q
sechðBðx� CtÞÞei½ðC=2Þx�ððC=2Þ2�B2Þt�; ð3:28Þ

Nðx; tÞ ¼ �2B2sech2ðBðx� CtÞÞ; ð3:29Þ
where B, C are constants. The solution decays to zero as jxj ! 1. We compute the problem on the interval [�32,32]. First we
test the Oð1Þ-acoustic speed case, i.e. we choose � ¼ 1;B ¼ 1;C ¼ 0:5 in (3.29). Table 3.1 lists the L2 and L1 errors and orders
at t ¼ 2:0 with different mesh sizes for the piecewise P3 and P4 polynomial bases. Then, we test the subsonic limit case with
� ¼ 10�4;B ¼ 1 and C ¼ 0:5 in (3.29). Table 3.2 presents the numerical errors and orders at t ¼ 2:0 with different mesh sizes
Fig. 3.5. Numerical results at different times in Example 3.3 for case II: electric field jEj.
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for the piecewise P3 and P4 polynomial bases. We can see the convergence order is optimal ((kþ 1)th order for Pk basis) in
both cases. In Fig. 3.1, we show the conservation of the conserved quantities D, P and H numerically in both the acoustic
speed case and the subsonic case. The results of Pk basis with lower k ðk ¼ 0;1;2Þ are similar and hence are not shown to
save space.

Example 3.2 (Plane waves). A family of nonlinear plane-wave solutions to the standard Zakharov system (3.27) can be given
in the form [20]
Eðx; tÞ ¼ aeiðkx�xtÞ; ð3:30Þ
Nðx; tÞ ¼ b; ð3:31Þ
Fig. 3.6. Numerical results at different times in Example 3.3 for case II: ion density N.
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provided the dispersion relation x ¼ k2 þ b is satisfied. We choose � ¼ 1; a ¼ 1; b ¼ 1; k ¼ 7 and x ¼ 50. We solve this prob-
lem on the interval ½0;2p�with piecewise P4 polynomial basis and mesh size h ¼ p=8. Fig. 3.2 shows the numerical results at
t ¼ 10. From Fig. 3.2, we can see that the LDG method provides a good resolution of the nonlinear plane waves and the ener-
gies D, P and H are conserved numerically.

Example 3.3 (Periodic soliton–soliton collisions). An analytic solution of the standard Zakharov system (3.27) can be found by
using the energy method [16]. The solution can be written as
Esðx; t; v; EmaxÞ ¼ Uðx� vtÞeiuðx�utÞ; ð3:32Þ
Nsðx; t; v ; EmaxÞ ¼ Wðx� vtÞ; ð3:33Þ
Fig. 3.7. Numerical results at different times in Example 3.3 for case III: electric field jEj.
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where
Uðx� vtÞ ¼ Emax � dnðw; qÞ; Wðx� vtÞ ¼ jUðx� vtÞj2

v2 � 1
þ N0;

w ¼ Emaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� v2Þ

p � ðx� vtÞ; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

max � E2
min

q
Emax

;

u ¼ v=2;
v
2

L ¼ 2pm; m ¼ 1;2;3; . . . ; u ¼ v
2
þ 2N0

v � E2
max þ E2

min

vð1� v2 ;

L ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� v2Þ

p
Emax

KðqÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� v2Þ

p
Emax

K 0
Emin

Emax

� �
;

Fig. 3.8. Numerical results at different times in Example 3.3 for case III: ion density N.
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dnðw; qÞ is the Jacobian elliptic function, L is the period of the Jacobian elliptic function or the period of the soliton, K and K 0

are the complete elliptic integrals of the first kind which satisfy KðqÞ ¼ K 0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Þ, and N0 is chosen so that

< Ns >¼ 1
L

R L
0 NSðx; tÞdx ¼ 0. This solution has been used to test different numerical methods for the Zakharov system in

[21,5,12,3].
For easy comparison of the numerical results, we choose the same initial conditions as in [3] to simulate the collision of

two solitary waves, which are
Fig. 3.9. Numerical results in Example 3.3: the energies D, P and H for three cases.

Fig. 3.10. Numerical results in Example 3.4 with v ¼ 0:5; m=k ¼ 0:02 : jEj (left) and N (right).

Fig. 3.11. Numerical results in Example 3.4 with v ¼ 0:5; m=k ¼ 0:06 : jEj (left) and N (right).
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Eðx;0Þ ¼ Esðxþ p;0; v1; E
1
maxÞ þ Esðx� p; 0;v2; E

2
maxÞ; ð3:34Þ

Nðx; 0Þ ¼ Nsðxþ p;0; v1; E
1
maxÞ þ Nsðx� p;0; v2; E

2
maxÞ; ð3:35Þ

Ntðx;0Þ ¼ @tNsðxþ p;0; v1; E
1
maxÞ þ @tNsðx� p;0;v2; E

2
maxÞ; ð3:36Þ
where x ¼ �p are the initial locations of the two solitons. The parameters are given in Table 3.3.

As in [3], we test the following three cases:

I. Collision of two solitons with equal amplitudes and opposite velocities:
E1
max ¼ E2

max ¼ 1:0; v1 ¼ �v2 ¼ 0:628319; ðparameter set AÞ:
II. Collision of two solitons with different amplitudes and opposite velocities:
E1
max ¼ 0:5; v1 ¼ 0:628319 ðparameter set BÞ;

E2
max ¼ 1:0; v2 ¼ 0:628319 ðparameter set AÞ:
III. Collision of two solitons with equal amplitudes and opposite velocities but different speeds:
E1
max ¼ 1:0; v1 ¼ 0:314159 ðparameter set CÞ;

E2
max ¼ 1:0; v2 ¼ �0:628319 ðparameter set AÞ:
In all cases, we take p ¼ 10. We solve the problem in the interval [�80,80] with piecewise P3 polynomial basis and mesh
size h ¼ 1=2. Figs. 3.3–3.8 show the profiles of jEj and N at different time for each case. It is known that the standard Zakharov
system is not integrable. This implies that collision between solitons cannot be absolutely elastic. In case I, Fig. 3.3 shows the
collision of two solitons with equal amplitudes and opposite velocities reduces the maximum Emax of both waves. Comparing
Fig. 3.13. Numerical results in Example 3.4 with v ¼ 0:5; m=k ¼ 0:2 : jEj (left) and N (right).

Fig. 3.12. Numerical results in Example 3.4 with v ¼ 0:5; m=k ¼ 0:07 : jEj (left) and N (right).
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with the same simulations performed in [21,5,12,3], the LDG scheme shows good resolution. In case II, from Fig. 3.5 we can
observe the soliton with larger peak value absorbs some waves during the collision. After collision, the soliton with a larger
peak value E1

max becomes bigger than its value before the collision, and the soliton with smaller peak value E2
max becomes

smaller. In case III, from Fig. 3.7 we can see that the soliton with larger speed will absorb some waves during the collision.
The numerical results of each case compare well with the simulation results by Bao et al. [3].

Three conservation laws D, P and H are known to the standard Zakharov system. Two of them (D and H) have been proved
for the LDG scheme. In Fig. 3.9, it shows that these energies are conserved well numerically by the LDG scheme.

Example 3.4 (Soliton–soliton collisions). Consider the one-dimensional generalized Zakharov system
iEt þ Exx þ 2NEþ 2kjEj2E ¼ 0; ð3:37Þ
�2Ntt � ðN � mjEj2Þxx ¼ 0; ð3:38Þ
with a family of one-soliton solutions [14],
Esðx; t; g;vÞ ¼ kþ m
�2 ð1=�

2 � v2Þ�1
	 
�1

2

Us; ð3:39aÞ

Us ¼ 2igsech½2gðx� vtÞ� exp½ivx=2þ ið4g2 � v2=4Þt þ iU0�; ð3:39bÞ

Nsðx; t;g;vÞ ¼
m
�2 ð1=�

2 � v2Þ�1jEsj2; ð3:39cÞ
where g;v are the soliton’s amplitude and velocity, and U0 is a trivial phase constant. With k > 0 and m > 0, the solitons exist
in two different regions: the subsonic region
Fig. 3.14. Numerical results in Example 3.4: the energies D, P and H.
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v2 <
1
�2 ; ð3:40Þ
and the transonic (or supersonic) region
v2 >
1
�2 1þ m=kð Þ: ð3:41Þ
For simplicity, we consider the symmetric collisions, where the two solitons have the same speed and same amplitude but
propagate in the opposite directions.
Fig. 3.15. Numerical results in Example 3.4: jEj (left) and N (right).



Table 3.4
Accuracy test in Example 3.5 for the plane-wave solution at time t ¼ 1, with piecewise P3 and P4 polynomial bases on m�m uniform meshes.

m P3 P4

L1 error Order L2 error Order L1 error Order L2 error Order

ReðEÞ 4 1.26E�01 – 1.07E�01 – 1.17E�02 – 1.29E�02 –
8 8.10E�03 3.96 7.11E�03 3.91 6.16E�04 4.25 4.99E�04 4.69
16 3.41E�04 4.57 3.50E�04 4.35 1.90E�05 5.02 1.45E�05 5.11
32 3.35E�05 3.35 2.59E�05 3.76 6.44E�07 4.88 4.70E�07 4.94
64 1.21E�06 4.79 1.00E�06 4.69 1.15E�08 5.81 1.06E�08 5.47

ImðEÞ 4 1.26E�01 – 1.07E�01 – 1.17E�02 – 1.29E�02 –
8 8.10E�03 3.96 7.11E�03 3.91 6.16E�04 4.25 4.99E�04 4.69
16 3.41E�04 4.57 3.50E�04 4.35 1.90E�05 5.02 1.45E�05 5.11
32 3.35E�05 3.35 2.59E�05 3.76 6.44E�07 4.88 4.70E�07 4.94
64 1.21E�06 4.79 1.00E�06 4.69 1.15E�08 5.81 1.06E�08 5.47

N 4 5.31E�02 – 1.58E�01 – 3.51E�02 – 3.71E�02 –
8 9.91E�03 2.42 1.42E�02 3.48 1.20E�04 8.17 2.33E�04 7.31
16 3.05E�04 5.02 3.94E�04 5.17 3.82E�06 4.98 6.13E�06 5.25
32 3.97E�05 2.94 6.02E�05 2.71 7.12E�08 5.75 9.15E�08 6.07
64 1.41E�06 4.81 2.20E�06 4.77 2.05E�09 5.12 2.22E�09 5.37

Fig. 3.16. Numerical results in Example 3.4: the energies D, P and H .
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Eðx; 0Þ ¼ Esðxþ p; 0;g; vÞ þ Esðx� p; 0;g;�vÞ;
Nðx;0Þ ¼ Nsðxþ p; 0;g; vÞ þ Nsðx� p;0;g;�vÞ:
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We set � ¼ 1;U0 ¼ 0; p ¼ 10 and g ¼ 0:3 in the following. All computations are performed with piecewise P3 polynomial ba-
sis with mesh size h ¼ 1 in the interval [�128,128]. We define the energy H
H ¼
Z

X
jrEj2 þ 1

2
ðV � V þ N2Þ � 2NjEj2 þ kjEj4

� �
dx:
However, H is not conserved when m – 2.

First we consider the collisions of two solitons with subsonic propagation speeds v ¼ 0:5; k ¼ 1 and m ¼ 0:02 (Fig. 3.10),
0.06 (Fig. 3.11), 0.07 (Fig. 3.12) and 0.2 (Fig. 3.13), respectively. It is known that the generalized Zakharov system is close to
the cubically nonlinear Schrödinger equation when m=k is sufficiently small. This means that the collisions between solitons
are nearly elastic. After the collisions, two solitons jEj propagate in their original directions but with smaller speeds
(Fig. 3.10) and the non-dispersive waves N generate a pair of non-dispersive waves. With the increase of m=k, the solitons’
speed becomes smaller (Fig. 3.11) and a series of non-dispersive waves are emitted after the collision point. In Fig. 3.14, from
(a) and (b) we can see the energies D and P are conserved, and H increases significantly when the collision of two solitons
takes place, and becomes smaller than its value before the collisions afterwards. When m=k is larger than a critical value (Figs.
3.12 and 3.13), the solitons are not generated again after the collision and a series of stronger non-dispersive waves are emit-
ted. As shown in [17], the critical value is strongly dependent on the soliton speed v. When the system is far from being ex-
actly integrable, the collision results in a fusion of the solitons into a new soliton like state. In Fig. 3.14, from (c) and (d), we
find the energies D and P are still conserved. H increases when the collision happens. From the oscillation of H after the first
collision, the fusion can be viewed as a series of collisions where two solitons become closer and closer.

Next we consider the collisions of two solitons in the supersonic region with v ¼ 3; k ¼ 1 and m ¼ 0:2;1:45 and 1.75
(Fig. 3.15), respectively. We can see that, when m=k is small, the collision seems to be elastic and the solitons’ speeds after
the collision are almost the same as before the collision. In (b) and (c) of Fig. 3.15, when m=k becomes larger, a pair of solitons
Fig. 3.17. Numerical results in Example 3.4 with v ¼ 0:5; m=k ¼ �0:8 : jEj (left) and N (right).

Fig. 3.18. Numerical results in Example 3.5: the energies D, P and H.
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with slower speed is emitted after the collision. As observed in [17], it also can be found that the amplitudes of these slower
solitons increase with the growth of m=k. The increasing of m=k also gives rise to radiative losses. In Fig. 3.16(a)–(c), we find
the energies D and P are conserved and H grows when the collision happens. After the collision, the energy H becomes smal-
ler than its value before the collision.
Fig. 3.19. Numerical results in Example 3.6 with piecewise P4 polynomial basis and mesh size h ¼ 1=2 at time t ¼ 1: (a) ReðEÞ, (b) ImðEÞ, (c) jEj, and (d) N.

Fig. 3.20. Numerical results in Example 3.6: the energies D, P and H.
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Finally, we consider the case with k < 0. We set v ¼ 0:5; k ¼ �1 and m ¼ 0:8, which falls in the subsonic region. Fig. 3.17
shows that the collision seems elastic and no significant radiation is observed. Fig. 3.16(d) shows the energies D and P are
conserved and H after the collision is almost the same as its value before collision.

Our numerical results of the collisions of the generalized Zakharov system are very well consistent with the simulations
performed in [17].

3.2. The two-dimensional Zakharov system
Example 3.5 (The two-dimensional plane waves). We use this example to test the accuracy of the LDG scheme in 2D.
Nonlinear plane-wave solutions to the 2D standard Zakharov system (2.7a) and (2.7b) can be given in the form
Eðx; tÞ ¼ aeiðk1xþk2y�xtÞ; ð3:42Þ
Nðx; tÞ ¼ b; ð3:43Þ
provided the dispersion relation x ¼ k2
1 þ k2

2 þ b is satisfied. We choose � ¼ 1; a ¼ 1; b ¼ 1; k1 ¼ 1; k2 ¼ 1 and x ¼ 3. We solve
this problem on the domain ½0;2p� � ½0;2p�with piecewise P3 and P4 polynomial bases and m�m uniform meshes. In Table
3.4, we can see the order of convergence is optimal. Though we do not list the P0; P1; P2 cases to save space, optimal conver-
gence orders are also observed in these numerical tests. Fig. 3.18 shows that the energies D, P and H are conserved under
piecewise P4 polynomial basis on a 16� 16 uniform mesh.

Example 3.6 (The two-dimensional standard Zakharov system). To show the capability of the LDG scheme, we consider the
two-dimensional standard Zakharov system
iEt þ DE� NE ¼ 0;

�2Ntt � DðN þ jEj2Þ ¼ 0;
with the initial condition
Eðx; y; 0Þ ¼ 2
ex2þy2 þ e�ðx2þy2Þ ei5= cosh

ffiffiffiffiffiffiffiffiffiffiffi
4x2þy2
p� �

;

Nðx; y;0Þ ¼ e�ðx
2þy2Þ; Ntðx; y;0Þ ¼ 0:
This example is taken from [3] with � ¼ 1. We solve the problem on the rectangle ½�64;64� � ½�64;64� with mesh size
h ¼ 1=2 by using piecewise P4 polynomial basis. Fig. 3.19 shows the ReðEÞ; ImðEÞ; jEj and N at time t ¼ 1. Fig. 3.20 shows
the energies D, P and H are conserved numerically. The numerical results compare very well with the results presented in [3].
4. Conclusion

In this paper, we have constructed a LDG method for the generalized Zakharov system. We prove that the LDG method
conserves the wave energy D of the generalized Zakharov system and the Hamiltonian H if the generalized Zakharov system
has this conserved quantity. Numerical tests have been performed to show the numerical optimal accuracy. Some applica-
tions, such as plane waves, soliton–soliton collisions of the standard and generalized Zakharov system and a two-dimen-
sional standard Zakharov system, have also been simulated to show the capability of the LDG method for the Zakharov
system.
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